Diagnosis of Sepsis in Newborn and Children

Niranjan “Tex” Kissoon, MD, MCCM,FRCP(C),FAAP,FACPE. UBC and BCCH Professor, Global Child Health University of British Columbia, Vice President Medical Affairs, BC Children’s Hospital and Sunny Hill Medical Center, Vancouver, Canada
Diagnosis of Sepsis

- What is sepsis?
- Is context dependant
- Varies depending on definitions
- Is changing based on technology and improved knowledge
- Concluding remarks
CMPA identified 327 cases involving sepsis—including 204 deaths—between 2009 and 2013.

“Inadequate patient assessment” was a factor in 75% of cases (168 lawsuits, and 159 complaints).

Forty per cent of legal actions resulted in an “unfavourable” outcome for the doctor.

Settlements often come after years of expensive litigation.

Included a nine-year-old boy with chickenpox who died of profound septic shock hours after he was discharged from an emergency department for the fourth time.
Sepsis

Core temp <36°C or >38.5°C
Tachycardia >2SD for age
Respiratory rate >2SD for age
White cell count elevated or suppressed for age

And
A suspected or proven infection caused by any pathogen OR a clinical syndrome Associated with a high probability of infection.
SIRS
SIRS + Infection
Temp. >38°C or <36°C, HR >90, RR >20 or PaCO₂ <32,
WBCs >12,000 or <4,000 or >10% bands
Sepsis
Sepsis + End Organ Damage
Severe Sepsis
Severe Sepsis + Hypotension
Septic Shock
Trajectory of Sepsis and Interventions

- Infection
- Sepsis
- Severe Sepsis
- Septic Shock

Initial assessment → expected recovery → effort required to return to recovery → time
Diagnosis of Sepsis

• What is sepsis?
• Is context dependant
• Varies depending on definitions
• Is changing based on technology and improved knowledge
• Concluding remarks
Diagnostic Criteria for Sepsis, Severe Sepsis and Septic Shock

• **General Variables**
 – Fever, hypothermia, tachycardia, tachypnoea, altered mental status, hypoglycemia, substantial edema

• **Inflammatory Variables**
 – Leucocytosis, leucopenia, > 10% immature WBC, elevated CRP or calcitonin

• **Hemodynamic Variables**
 – Arterial hypotension, elevated or decreased mixed venous O2 saturation and cardiac index
Diagnostic Criteria for Sepsis, Severe Sepsis and Septic Shock

• Organ Dysfunction Variables
 – Hypoxemia, oliguria, elevated creatinine, coagulation abnormalities, paralytic ileus, thrombocytopenia, hyperbilirubinemia

• Tissue Perfusion Variables
 – Decreased capillary refill or mottling, hyperlactatemia,

• Severe sepsis (sepsis + organ dysfunction)

• Septic shock (severe sepsis + fluid intractable hypotension or hyperlactatemia)
Suspicion of Sepsis in Community

Any Newborn

– feels feverish (hot) or cold
– peri-umbilical pus, swelling or redness
– poor or no sucking (not feeding)
– feeble or no cry
– drowsy, difficult to arose
– convulsion
– repeated vomiting

Any Child

– Not feeding
– Feeling cold
– Convulsion
– Disoriented, difficult to engage
– Repeated vomiting

Interrupting Pathways to Sepsis Project - Bangladesh
Suspicion of Sepsis at Health Facility

Syndromic Sepsis Case Finding Tool - Neonate

Instruction: Please look for the danger signs listed below and (✓) Tick in appropriate box

<table>
<thead>
<tr>
<th>Danger Signs</th>
<th>Look/Ask/Feel</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypothermia</td>
<td>1. Cold/Clammy Skin</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Blue or Pale Color Skin</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Axillary temperature < 96°F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hyperthermia</td>
<td>4. Axillary temperature > 101.3°F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Altered mental status</td>
<td>5. Unconscious/No movement</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6. Lethargic/movement only when stimulated</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7. Difficult to arouse/drowsy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Convulsion</td>
<td>8. Convulsion- by history (care giver report) or examination</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Respiratory Distress</td>
<td>9. Severe Chest In drawing</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10. Severe Breathing difficulty/noise breathing</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>11. Respiratory rate > 60 (with any other danger sign)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Umbilical infection</td>
<td>12. Pus/foul smelling discharge from umbilicus</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>13. Red and swollen umbilicus with discharge</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not Feeding properly</td>
<td>14. Stops feeding properly/sudden loss of appetite</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15. Poor or no sucking reflex</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16. Vomits everything out/projectile vomiting</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
• 1101 (86%) met the sepsis criteria.
• The SIRS criteria captured 61 deaths, sensitivity 95% (95% CI, 90–100%) and specificity and 15% (95% CI, 13–17%).
• Most discriminatory individual component of the SIRS criteria was the WBC count, which alone had a sensitivity of 72% and a specificity of 56% for the identification of in hospital mortality.
• Having any two criteria had sensitivity equal to the full sepsis definition but had lower specificity (0.12).
CAPHC SEPSIS SCREENING TOOL

Emergency Department

Patient Age: _______ days/months/years
Date/Time: ______________

This is a screening tool to identify patients with severe sepsis. No screening tool can identify all patients with severe sepsis. If you are concerned that a patient might have severe sepsis or another serious condition, notify the responsible physician immediately regardless of whether they meet the criteria in this tool.

TACHYCARDIA

<table>
<thead>
<tr>
<th>Age Group</th>
<th>Critical HR</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 6 m</td>
<td>> 150</td>
</tr>
<tr>
<td>6 < 12 m</td>
<td>> 160</td>
</tr>
<tr>
<td>1 < 4 y</td>
<td>> 145</td>
</tr>
<tr>
<td>4 < 10 y</td>
<td>> 125</td>
</tr>
<tr>
<td>≥ 10 y</td>
<td>> 105</td>
</tr>
</tbody>
</table>

CONTINUE TO MONITOR AS PER CTAS GUIDELINES

ARE THERE ANY SIGNS OF INFECTION?
- Fever (> 38.0 C)
- Hypothermia (< 36.0 C)
- Cough /chest pain/respiratory distress
- Abdominal pain /& or distention
- Vomiting/Emerges
- Skin or joint (pain/swelling/redness)
- Other signs of infection

ARE THERE ANY HIGH RISK MEDICAL CONDITIONS?
- Age < 3 months
- Immunocompromised (Malignancy, Transplant, Asplenia/Sickle Cell, Medications)
- Cardiac, Respiratory or Neuromuscular Disease
- Indwelling Vascular Access/ Medical Device
- Recent Surgery/hospitalization
- Significant Developmental Delay
- Other high risk conditions

AND/OR

Assess for signs of SEVERE SEPSIS/SEPTIC SHOCK. ARE THERE SIGNS OF?
- Perfusion Changes (capillary refill > 2 sec, low SpO2, mottled skin, cold extremities)
- Mental Status Changes (confusion, lethargy, irritability)

NOTIFY MOST RESPONSIBLE PHYSICIAN. PROCEED TO SEVERE SEPSIS/SEPTIC SHOCK GUIDELINES

This child may have early signs of sepsis. Complete assessment. Triage Appropriately. Continue to monitor as per CTAS guidelines.

RN Reviews Vital Signs

Patient has temperature >101.3F or <96.8F AND 1 of the 2:

1) Heart Rate Abnormality
(From Goldstein et al. with correction for age of fever by Cruz et al.)

<table>
<thead>
<tr>
<th>Temperature (F)</th>
<th><6 mo</th>
<th>6 mo-1y/o</th>
<th>1-3 y/o</th>
<th>3-10 y/o</th>
<th>>10 y/o</th>
</tr>
</thead>
<tbody>
<tr>
<td><109</td>
<td>160</td>
<td>140</td>
<td>130</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>>109, <101</td>
<td>185</td>
<td>145</td>
<td>135</td>
<td>115</td>
<td></td>
</tr>
<tr>
<td>>101, <102</td>
<td>190</td>
<td>150</td>
<td>140</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>>102, <103</td>
<td>195</td>
<td>155</td>
<td>145</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td>>103, <104</td>
<td>200</td>
<td>160</td>
<td>150</td>
<td>130</td>
<td></td>
</tr>
<tr>
<td>>104, <105</td>
<td>205</td>
<td>165</td>
<td>155</td>
<td>135</td>
<td></td>
</tr>
<tr>
<td>>105</td>
<td>210</td>
<td>170</td>
<td>160</td>
<td>140</td>
<td></td>
</tr>
</tbody>
</table>

2) Respiratory Rate Abnormality
(From Warren et al.)

<table>
<thead>
<tr>
<th>RR</th>
<th><30</th>
<th>>60</th>
<th><25, >65</th>
<th><20, >30</th>
<th>>14, >24</th>
<th><14, >20</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Contact MD/NP to Evaluate RN to document notification of MD/NP
MD/NP is responsible to respond in 10 minutes

MD/NP evaluates patient at the bedside:
Are the vital sign abnormalities explained by pain, medication, anemia, dehydration or other external stimuli?
(Adapted from Goldstein et al.)

No

Your patient has SIRS.
SIRS with a suspected or proven infection, is **Sepsis.**

MD/NP: Are there signs of organ dysfunction?
(Adapted from Brierley et al.)

<table>
<thead>
<tr>
<th>Cardiovascular</th>
<th>Respiratory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capillary refill > 2 seconds, decreased pulses, cool extremities, mottling, flush capillary refill, bounding pulses, or wide pulse pressure? Hypotension?</td>
<td>Escalating respiratory support? If congenital heart disease, new oxygen requirement above baseline?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Renal</th>
<th>Neurological</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low urine output: < 1 cc/kg/hour?</td>
<td>Irritable, agitated, drowsy, confused, lethargic, not arousable?</td>
</tr>
</tbody>
</table>

Sepsis without organ dysfunction
- MD/NP must reassess patient in 1 hour
- Continuous monitor
- Confirm IV access
- Strongly consider fluid resuscitation
- Consider whether current antibiotics are appropriate
- Discuss with attending
- Consider whether ICU consult is needed

Yes

INITIATE SEVERE SEPSIS PROTOCOL
Sepsis

Paediatric Sepsis

Severe sepsis is a CLINICAL EMERGENCY. Signs and symptoms of sepsis in children can be subtle and deterioration to shock rapid. Early initiation of simple treatment improves outcomes.

Recognition:
If a child with suspected or proven infection AND has at least 2 of the following:
- Core temperature < 36°C or > 38.5°C
- Inappropriate tachycardia (Refer to local criteria / APLS guidance)
- Altered mental state (including sleepiness, irritability, lethargy, flappiness)
- Reduced peripheral perfusion / prolonged capillary refill

Think: could this child have SEPSIS or SEPTIC SHOCK? If in doubt, consult a senior clinician.

Complete all elements within 1 hour

Respond with Paediatric Sepsis 6:

1. Give high flow oxygen:

2. Obtain intravenous / intraosseous access & take blood tests:
 a. Blood cultures
 b. Blood glucose - treat low blood glucose
 c. Blood gas (+ FBC, lactate & CRP as able for baseline)

3. Give IV or IO antibiotics:
 - Broad spectrum cover as per local policy

4. Consider fluid resuscitation:
 - Aim to restore normal circulating volume and physiological parameters
 - Titrate 20 ml/kg Isotonic Fluid over 5 - 10 min and repeat if necessary
 - Caution with fluid overload > Examine for crepitations & hepatomegaly

5. Involve senior clinicians / specialists early:

6. Consider inotropic support early:
 - If normal physiological parameters are not restored after ≥ 40 ml/kg fluids
 - NB adrenaline or dopamine may be given via peripheral IV or IO access

Record any reasons for variation from Paediatric Sepsis 6 overleaf
Diagnosis of Sepsis

- What is sepsis?
- Is context dependant
- Varies depending on definitions
- Is changing based on technology and improved knowledge
- Concluding remarks
Defining Pediatric Severe Sepsis

PICU – 42 beds, 1729 patients

Consensus guidelines (research criteria) N= 90 (5.2%)

Diagnosis by healthcare professionals (clinical criteria) n= 92 (5.6%)

ICD 9 (administrative criteria) N=103 (6.0%)
Discordant Identification of Severe Sepsis

- Only 301/706 patients (42.6%) were identified by both criteria (κ 0.57 ± 0.02).
- The 137/438 of patients (31%) who did not meet consensus criteria were younger, had a lower severity of illness, and a lower PICU mortality than those who met consensus criteria or both definitions.

Agreement was lowest in North America (31%) moderate in Australia and New Zealand (45%) and Europe (51%); and highest in Asia (72%), Africa (72%), and South America (85%).

Diagnosis of Sepsis

- What is sepsis?
- Is context dependant
- Varies depending on definitions
- Is changing based on technology and improved knowledge
- Concluding remarks
Sepsis Detection Methods
Algorithmic Alert vs. Physician Judgement

Test characteristics of sepsis screening tests.

<table>
<thead>
<tr>
<th>Test</th>
<th>Algorithmic Alert</th>
<th>Physician Judgment</th>
<th>Combined Method</th>
<th>Sequential Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity</td>
<td>92.1 (91.67–92.43)</td>
<td>72.73 (72.1–73.35)</td>
<td>96.6 (96.3–96.9)</td>
<td>68.2 (67.5–68.8)</td>
</tr>
<tr>
<td>Specificity</td>
<td>83.4 (82.91–83.95)</td>
<td>99.51 (99.41–99.61)</td>
<td>83.3 (82.8–83.8)</td>
<td>99.6 (99.6–99.7)</td>
</tr>
<tr>
<td>Positive predictive value</td>
<td>2.5 (2.24–2.67)</td>
<td>40.25 (39.56–40.94)</td>
<td>2.6 (2.3–2.8)</td>
<td>47.6 (46.9–48.3)</td>
</tr>
<tr>
<td>Positive likelihood ratio</td>
<td>5.6 (5.18–5.95)</td>
<td>148.79 (117.2–1900)</td>
<td>5.8 (5.5–6.1)</td>
<td>200.8 (151.8–266.7)</td>
</tr>
<tr>
<td>Negative likelihood ratio</td>
<td>0.09 (0.05–0.19)</td>
<td>0.27 (0.19–0.39)</td>
<td>0.04 (0.01–0.12)</td>
<td>0.32 (0.24–0.43)</td>
</tr>
<tr>
<td>Receiver operative characteristic curve area</td>
<td>0.88 (0.85–0.91)</td>
<td>0.86 (0.81–0.91)</td>
<td>0.90 (0.88–0.92)</td>
<td>0.84 (0.79–0.89)</td>
</tr>
</tbody>
</table>

Severe sepsis/septic shock prevalence: 88 (0.45%)
What is the probability this patient is septic?
Lactate Normalization and Organ Dysfunction in Sepsis

Lactate normalization was associated with decreased risk of persistent organ dysfunction (RR 0.46, 0.29-0.73).

Lactate clearance was not (RR 0.70, 0.35-1.41).

Table VI. Absolute and relative change in lactate level from the first to the final lactate level, by clearance and normalization status

<table>
<thead>
<tr>
<th></th>
<th>Lactate clearance (n = 70)</th>
<th>Lactate nonclearance (n = 7)</th>
<th>Lactate normalization (n = 62)</th>
<th>Lactate non-normalization (n = 15)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absolute change in lactate level</td>
<td>-0.73 mmol/L [-0.3, -1.55]</td>
<td>0.55 mmol/L [0.47, 1.69]</td>
<td>-0.58 mmol/L [-0.27, -1.44]</td>
<td>-0.33 mmol/L [-0.19, -0.58]</td>
</tr>
<tr>
<td>% change in lactate level</td>
<td>-32.1% [-19.5, -55.2%]</td>
<td>35.3% [16.0, 61.9%]</td>
<td>-33.4% [-19.4, -56.1%]</td>
<td>-11.9% [35.2%, -30.6%]</td>
</tr>
</tbody>
</table>

Results presented as median [IQR].

Still Laborious and Slow?

- Colonies or or a positive blood culture bottle!
- Plate Innoculated
- Instrument Loaded
Matrix Assisted Laser Desorption/Ionization (MALDI)

From Sauer, Nature Review Methods 2010
PCR Followed by Mass Spec

• Whole samples and paired blood cultures (247 from 175 patients)

• Blood Culture
 – Agreement between PCR-MS and conventional method (blood culture) = 94%
 – Sensitivity 97%, specificity 99% for PCR-MS

• PCR-MS identified 13 more pathogens not found by conventional means

Elena Jordana-Lluch et al PLOS One 2013
Rapid Molecular Diagnostics

• Biomarkers - characteristics that can be measured and evaluated as an indicator of pathological processes or responses to a therapeutic intervention

• Ideal for all biomarkers
 – sensitivity, specificity, predictive value

• Ideal for acute conditions
 – readily obtainable from body fluids or tissue samples
 – test results available in a relatively short period

Gene Expression Profiles

Transcriptional Profiling: Ready for prime time

New Diagnostic Biomarkers in Pediatric Sepsis

Table 1. Association of study measurements with severity of illness, organ dysfunction, and clinical outcome in septic patients.

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>MMP-9/TIMP-1</th>
<th>MrProANP</th>
<th>A-FaBP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>rs</td>
<td>P</td>
<td>rs</td>
</tr>
<tr>
<td>Severity of illness and Organ Dysfunction</td>
<td>-0.57</td>
<td><0.001</td>
<td>0.60</td>
</tr>
<tr>
<td>PELOD</td>
<td>-0.74</td>
<td><0.001</td>
<td>0.62</td>
</tr>
<tr>
<td>Clinical Outcome</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICU LOS</td>
<td>-0.68</td>
<td><0.001</td>
<td>0.69</td>
</tr>
<tr>
<td>Hospital LOS</td>
<td>-0.66</td>
<td><0.001</td>
<td>0.62</td>
</tr>
<tr>
<td>Inotrope-free days</td>
<td>0.23</td>
<td>0.299</td>
<td>-0.07</td>
</tr>
<tr>
<td>Ventilator-free days</td>
<td>-0.242</td>
<td>0.277</td>
<td>-0.16</td>
</tr>
<tr>
<td>GOS b</td>
<td>0.45</td>
<td>0.036</td>
<td>-0.19</td>
</tr>
</tbody>
</table>

Sidestream Dark-Field Images of Sublingual Microcirculation

Vincent JL and De Backer D NEJM 369;18;2013
Persistent low microcirculatory vessel density in nonsurvivors of sepsis

Figure 2. The functional capillary density (FCD) improved in survivors. Day 1: 1.7 cm/cm² (0.8–3.4); day 2: 4.3 cm/cm² (2.1–6.9) (p = .001). The FCD in nonsurvivors did not change. Day 1: 3.2 cm/cm² (0.8–3.8); day 2: 1.9 cm/cm² (1.0–2.1). The median FCD on day 2 was lower in nonsurvivors: 1.9 cm/cm² (1.0–2.1) vs. 4.3 cm/cm² (2.1–6.9) (p = .009).

Top A et al Crit Care Med 2011;39:8
Mortality Prediction in PICU

- Septic shock (2005 consensus) was sensitive but not specific (AUC = 0.69; 95% CI 0.65–0.72).
- Oxygenation markers, ventilator support, hypotension, cardiac arrest, serum lactate, pupil responsiveness, and immunosuppression were the best-performing predictors (0.843; 0.811–0.875).
- The sepsis score performed comparably when applied to all children admitted with invasive infection (0.810; 0.781–0.840).

Schlapbach L J et al Intensive Care Med 2017;
Mortality Prediction in PICU

Every one-point increase was associated with a 28.5% (23.8–33.2%) increase in the odds of death.

Children with a score ≥6 had 19.8% mortality and accounted for 74.3% of deaths.

Schlapbach L J et al Intensive Care Med 2017;
• Intuition that something was wrong despite the clinical assessment of non-severe illness substantially increased the risk of serious illness (LR 25.5, 95% CI 7.9 to 82.0)
• Strongly associated with gut feeling: children’s overall response (drowsiness, no laughing), abnormal breathing, weight loss, and convulsions.
• Strongest contextual factor was the parents’ concern that the illness was different from their previous experience (OR 36.3, 95% CI 12.3 to 107).
Conclusions

• Sepsis is a life threatening organ dysfunction caused by a dysregulated host response to infection
• Present definitions and methods of diagnosis are imperfect
• Approaches are context dependent and should be pragmatic
• Move afoot to change the current state.